Evidence for the presence and potential co-existence of vasoactive intestinal polypeptide (VIP), pituitary adenylate cyclase-activating polypeptide (PACAP) and nitric oxide synthase (NOS) in gastro-intestinal endocrine cells and/or nerve fibers is conflicting and very few results exist on development. This immunofluorescence study aims to clarify the appearance and localization of VIP, PACAP and NOS in the gastro-intestinal tract of the Axolotl, Ambystoma mexicanum, during ontogeny. VIP-immunoreactivity appeared in nerve fibers as early as on day 3 after hatching likely indicating a particular role, such as a trophic action, of VIP in very early development. PACAP-immunoreactivity was observed 3 days later within the VIP-immunoreactive (-IR) fibers. From this time on, VIP- and PACAP-immunoreactivity exhibited complete co-existence. VIP/PACAP-IR fibers were found throughout the gastro-intestinal tract. They were most prominent in the myenteric plexus and the muscle layers and less frequent in the submucosa. NOS-immunoreactivity appeared as late as at the 1st (64 days) juvenile stage in a subpopulation of the VIP/PACAP-IR fibers that contacted submucosal arteries. We found only very few VIP/PACAP-IR perikarya, indicating that part of the VIP/PACAP-IR fibers is of extrinsic origin. On day 12 and in the 1st and 2nd (104 days) juvenile stage, infrequent PACAP-IR entero-endocrine cells were noted, while neither VIP- nor NOS-immunoreactivity occurred in endocrine cells at any stage of development. The complete coexistence of neuronal PACAP- and VIP-immunoreactivities and their very early appearance in ontogeny may suggest important and coordinated roles of both peptides in the control of Axolotl gastro-intestinal activity, while the VIP/ PACAP/NOS-IR fibers may be involved in the regulation of submucosal blood flow.