A new process-an electron-"radiomagnetic" treatment-for obtaining high-remanence, low-coercive-force loops in magnetic alloys was recently announced. As an example, 2-MeV electron irradiation of 6-mil-thick ring laminations of polycrystalline 5-80 Mo Permalloy with 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">17</sup> e/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> in an applied circumferential magnetic field of 0.2 Oe at <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\sim100\deg</tex> C produced record highs in remanence (∼6700 G) for this material. Additional studies of this process have been made to determine some of the controlling factors and the range of application. In particular, the effects of the dose (number of e/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) and of the preirradiation magnetic properties were examined. The results show that: 1) for a given dose of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1.1 \times 10^{17}</tex> 2-MeV e/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , the relative change in remanence ( <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\DeltaB_{r}/B_{r}</tex> ) is always positive, ranging from 10 to 50 percent, but varies inversely with the preirradiation value of remanence (B <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">r</inf> ); 2) for the same dose, the relative change in coercive force ( <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\DeltaH_{c}/H_{c}</tex> ) also depends upon the preirradiation value of remanence, but in a different way. For <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B_{r} < 5000</tex> G, <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\DeltaH_{c}/H_{c}</tex> is either negative or zero. For <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B_{r} > 5000</tex> G, <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\DeltaH_{c}/H_{c}</tex> is positive, ranging from 20 to 150 percent, and increases linearly with <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B_{r}; 3</tex> ) if the dose is reduced to <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\sim0.8 \times 10^{17}</tex> e/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , then <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">\DeltaH_{c}/H_{c}</tex> is reduced to a tolerable level (∼10 percent) with no significant sacrifice in the positive gain in remanence and rectangularity. Hence, there are optimum dose ranges in the "radio-magnetic" treatments of alloys, where significant gains in remanence may be obtained without appreciable increases in coercive force.