For the coefficients bn of an odd function $$f(z) = z + \sum\nolimits_{k = 1}^\infty {{}^bk^{z^{2k + 1} } } $$ , regular in the unit disk, we obtain the estimate $$|b_n | \leqslant \frac{1}{{\sqrt 2 }}\sqrt {1 + |b_1 |^2 } \exp \frac{1}{2}\left( {\delta + \frac{1}{2}|b_1 |^2 } \right),where \delta = 0.312,$$ (1) from which it follows that ¦bn¦≤1, if ¦b1¦≤0.524. It follows from (1) that the coefficients cn, n = 3, 4,..., of a regular function $$f(2) = z + \sum\nolimits_{k = 2}^\infty {{}^ck^{z^k } } $$ , univalent in the unit desk, satisfy $$|c_n | \leqslant \frac{1}{2}\left( {1 + \frac{{|c_2 |^2 }}{4}} \right)n\exp \left( {\delta + \frac{{|c_2 |^2 }}{8}} \right),where \delta = 0.312,$$ in particular, ¦cn¦≤n, if ¦c2¦≤1.046.
Read full abstract