Abstract In a sequence, at least two aspects of information—the identity of items and their serial order—are maintained and supported by distinct working memory (WM) capacities. Verbal serial order WM is modulated by spatial processing, reflected in the Spatial Position Association of Response Codes (SPoARC) effect—the left-beginning, right-end positional association between space and serial position of verbal WM memoranda. We investigated the individual differences in this modulation with both behavioral and neurobiological approaches. We administered a battery of seven behavioral tasks with 160 healthy adults and collected resting-state fMRI data from a subset of 25 participants. With a multilevel mixed-effects modeling approach, we found that the SPoARC effect’s magnitude predicts individual differences in verbal serial order WM capacity and is related to spatial item WM capacity. With a graph-theory-based analytic approach, this interaction between verbal serial order WM and spatial WM was corroborated in that the level of interaction between corresponding cortical regions (indexed by modularity) was predictive of the magnitude of the SPoARC effect. Additionally, the modularity of cortical regions associated with verbal serial order WM and spatial attention predicted the SPoARC effect’s magnitude, indicating the involvement of spatial attention in this modulation. Together, our findings highlight multiple sources of the interplay between verbal serial order WM and spatial processing.
Read full abstract