We give examples of three features in the design of randomized controlled clinical trials which can increase power and thus decrease sample size and costs. We consider an example multilevel trial with several levels of clustering. For a fixed number of independent sampling units, we show that power can vary widely with the choice of the level of randomization. We demonstrate that power and interpretability can improve by testing a multivariate outcome rather than an unweighted composite outcome. Finally, we show that using a pooled analytic approach, which analyzes data for all subgroups in a single model, improves power for testing the intervention effect compared to a stratified analysis, which analyzes data for each subgroup in a separate model. The power results are computed for a proposed prevention research study. The trial plans to randomize adults to either telehealth (intervention) or in-person treatment (control) to reduce cardiovascular risk factors. The trial outcomes will be measures of the Essential Eight, a set of scores for cardiovascular health developed by the American Heart Association which can be combined into a single composite score. The proposed trial is a multilevel study, with outcomes measured on participants, participants treated by the same provider, providers nested within clinics, and clinics nested within hospitals. Investigators suspect that the intervention effect will be greater in rural participants, who live farther from clinics than urban participants. The results use published, exact analytic methods for power calculations with continuous outcomes. We provide example code for power analyses using validated software.