We present the design of efficient all-optical code-division multiplexing (AOCDM) systems that can transmit multiple-bit-rate (MBR) data signals over a common optical fiber. This is achieved when the proposed strict optical orthogonal code (OOC) of autocorrelation and cross-correlation constraints of 1 are used but without performance degradation compared with the use of conventional OOC. We describe the design of various strict OOC's by employing the useful concept of slot distances, and methods of code construction are also presented. Moreover, we give the principle of MBR data transmissions in an AOCDM system. It is shown that AOCDM systems using the proposed OOC can effectively transmit multiuser MBR and equal-bit-rate (EBR) data with no increase of system complexity. In principle, optimal strict OOC's need the same or a slightly larger system bandwidth compared with optimal conventional OOC's for EBR operation, whereas the former can require a smaller system bandwidth and have a better system performance than the latter for MBR transmissions. A new, to our knowledge, family of strict OOC's is also introduced, whose code words can have nonconstant weights to support multiuser communications with different transmission quality. Furthermore, we design low-cost AOCDM transmitters that are based on an efficient gain-switching scheme that does not require an electro-optic intensity modulator to on-off modulate an optical clock pulse stream at each transmitter. The basic operation principle is also experimentally demonstrated.
Read full abstract