The development of pure natural fibres as sound absorptive material remains overlooked due to their lack of mechanical and moist properties, low durability, and vulnerability to be damaged by the environment. Certain fibre treatments are needed to improve such disadvantages. This paper investigates sound absorption characteristics of coconut fibre (coir) and oil palm fibre made from empty fruit bunches (OPEFB) fibre bonded by polyester that can protect them from the ambient environment in order to increase their durability. Two types of fibre-polyester composites have been tested. The first is the fibre-polyester composite (FPC) type, which is totally coated with polyester as the composite matrix. Another type is the fibre-polyester bonded composite (FPBC), in which the polyester is brushed into slice by a slice of the fibre layer in order to coat and bond the fibre, although porous among the fibre remains possible. A two-channel impedance tube is used in the measurement within 200 Hz to 3000 Hz of the frequency range. It is found that FPBC type panel has almost similar sound absorption characteristics to its purely natural fibre as it is able to maintain the panel porosity. The coconut coir fibre panel and its composite have a maximum absorption coefficient of almost 100% within the frequency range 1500-2000 Hz, considerably better than the OPEFB fibre, with only about 80% of the absorption coefficient. If the FPC layer exists, the sound absorption is reduced, and the frequency peaks are also shifted. Additions of the FPC panel layer thickness produced lower sound absorptions and shifted the peaks to the lower frequency range. The FPBC panel type is viable to protect the fibre from the environment without changing its sound absorption characteristics.
Read full abstract