Camera trapping is the standard field method of monitoring cryptic, low-density mammal populations. Typically, researchers run camera surveys for 60 to 90 days and estimate density using closed population spatially explicit capture-recapture (SCR) models. The SCR models estimate density, capture probability (g0), and a scale parameter (σ) that reflects ranging behaviour. We used a year of camera data from 20 camera stations to estimate the density of male jaguars (Panthera onca) in the Cockscomb Basin Wildlife Sanctuary in Belize, using closed population SCR models. We subsampled the dataset into 276 90-day sessions and 186 180-day sessions. Estimated density fluctuated from 0.51 to 5.30 male jaguars / 100 km2 between the 90-day sessions, with comparatively robust and precise estimates for the 180-day sessions (0.73 to 3.75 male jaguars / 100 km2). We explain the variation in density estimates from the 90-day sessions in terms of temporal variation in social behaviour, specifically male competition and mating events during the three-month wet season. Density estimates from the 90-day sessions varied with σ, but not with the number of individuals detected, suggesting that variation in density was almost fully attributable to changes in estimated ranging behaviour. We found that the models overestimated σ when compared to the mean ranging distance derived from GPS tracking data from two collared individuals in the camera grid. Overestimation of σ when compared to GPS collar data was more pronounced for the 180-day sessions than the 90-day sessions. We conclude that one-off ('snap-shot') short-term, small-scale camera trap surveys do not sufficiently sample wide-ranging large carnivores. When using SCR models to estimate the density from these data, we caution against the use of poor sampling designs and/or misinterpretation of scope of inference. Although the density estimates from one-off, short-term, small-scale camera trap surveys may be statistically accurate within each short-term sampling period, the variation between density estimates from multiple sessions throughout the year illustrate that the estimates obtained should be carefully interpreted and extrapolated, because different factors, such as temporal stochasticity in behaviour of a few individuals, may have strong repercussions on density estimates. Because of temporal variation in behaviour, reliable density estimates will require larger samples of individuals and spatial recaptures than those presented in this study (mean +/- SD = 14.2 +/- 1.2 individuals, 37.7 +/- 4.7 spatial recaptures, N = 276 sessions), which are representative of, or higher than published sample sizes. To satisfy the need for larger samples, camera surveys will need to be more expansive with a higher density of stations. In the absence of this, we advocate longer sampling periods and subsampling through time as a means of understanding and describing stability or variation between density estimates.