Development of cambial variant and xylem structure were studied in the stem of Cocculus hirsutus (Menispermaceae). In the early stages of stem development several collateral vascular bundles are joined by interfascicular cambium resulting in the formation of a complete cambial cylinder. After functioning for two to three years the cambial ring ceases its activity. Subsequently a second ring of cambium is formed from the innermost cortical parenchyma cells. These parenchyma cells undergo periclinal divisions to give rise to cells that become lignified, abaxially, and cambial cells, adaxially. The cambial cells divide periclinally giving rise to individual vascular bundles with xylem and phloem. Later the cambium in each bundle is joined by interfascicular cambium. Subsequent cambia develop similarly resulting in the formation of successive rings of xylem and phloem. During the leafless condition, all the cambial rings are dormant, and flanked by mature xylem and phloem elements. With the sprouting of new leaves, either the existing outermost cambium reactivates or an entire new ring of cambium develops. The xylem is diffuseporous with indistinct growth rings. It is composed of fibre-tracheids, tracheids, vessel elements, libriform fibres, and parenchyma cells. Xylem rays are multiseriate, compound and heterocellular. Deformed libriform fibres and vessel elements commonly occur among the ray cells in all the successive rings of xylem. The length of fibres and the height and width of xylem rays increase gradually from the centre towards the periphery of the stem.