With the increasing global demand for energy, there is a critical need for efficient and sustainable energy storage solutions. Supercapacitors (SCs) have emerged as promising candidates due to their high-power density, long cycle life, and environmental friendliness. This study explores the development of iron-doped cobalt metal–organic frameworks (Co-MOFs: Fe) and their derived oxides supported on Ni foam as high-performance supercapacitor electrodes. The impact of conversion temperature on electrochemical properties of Co-MOFs: Fe derived Co3O4: Fe was evaluated. The results disclosed that the conversion at 500 °C significantly enhances the surface area, specific capacitance, and charge transfer efficiency of the electrodes. It exhibited the highest specific capacity of ∼ 2135.08 F g−1 at a current density of 1 A/g, along with excellent cycling stability of 87 %. Subsequently, an asymmetric supercapacitor was constructed with the MOF-derived Co3O4: Fe at 500 °C as anode and activated carbon as cathode materials. The device exhibited a specific capacitance of 233.98 F g−1 at 1 A/g with an energy density of ∼ 51.99 Wh/kg, power density of 500.14 W/kg, and a significant capacity retention of ∼ 89 % over 10,000 cycles. These findings validate the potential of Co-MOF: Fe derived Fe-doped Co3O4 as potential materials for practical energy storage applications.
Read full abstract