Abstract

A novel composite hydrogel was synthesized via Schiff base reaction between chitosan and di-functional poly(ethylene glycol) (DF-PEG), incorporating glucose oxidase (GOx) and cobalt metal-organic frameworks (Co-MOF). The resulting CS/PEG/GOx@Co-MOF composite hydrogel was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and energy-dispersive X-ray spectroscopy (EDS). The results confirmed successful integration and uniform distribution of Co-MOF within the hydrogel matrix. Functionally, the hydrogel exploits the catalytic decomposition of glucose by GOx to generate gluconic acid and hydrogen peroxide (H2O2), while Co-MOF gradually releases metal ions and protects GOx. This synergy enhanced the antibacterial activity of the composite hydrogel against both Gram-positive (S. aureus) and Gram-negative bacteria (E. coli), outperforming conventional chitosan-based hydrogels. The potential of the composite hydrogel in treating wound infections was evaluated through antibacterial and wound healing experiments. Overall, CS/PEG/GOx@Co-MOF hydrogel holds great promise for the treatment of wound infections, paving the way for further research and potential clinical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call