Microplastic pollution has become a primary global concern in the 21st century. Recyclable magnetic particles with micro-nanostructures are considered an efficient and economical way to remove microplastics from water. In this study, superhydrophobic magnetic cobalt ferrite particles were prepared by using a simple coprecipitation method combined with surface functionalization. The micromorphology, chemical composition, hysteresis loop, and surface contact angle of the functionalized cobalt ferrite were characterized. The separation efficiency and absorption capacity of cobalt ferrite particles in water-oil separation and microplastic removal were investigated. The results showed that the saturation magnetic field intensity of cobalt ferrite was 65.52 emu/g, the residual magnetization intensity (Mr) was 18.79 emu/g, and the low coercivity was 799.83 Oe. Cobalt ferrites had stable superhydrophobicity in the pH range of 1-13. The separation efficiency of cobalt ferrite powder for four oil-water mixture separations was higher than 94.2%. The separation efficiency was as high as 99.6% in the separation of the hexane and water mixtures. Due to the synergistic effect of the hydrophobic effect and van der Waals force, the functionalized magnetic cobalt ferrite had a high and stable microplastic removal efficiency and capture capacity. The removal efficiency of microplastics was close to 100%, and the capture capacity was 2.56 g/g. After ten microplastic removal cycles, the removal efficiency reached more than 98%, and the surface contact angle was still greater than 150°.
Read full abstract