Corotating coaxial rotors are seeing renewed interest in distributed electric propulsion systems and electric vertical take-off and landing (eVTOL) aircraft. The recent literature reports many interesting investigations, using prescribed rotor blades, into the flow phenomena as well as aerodynamic and aeroacoustic benefits of corotating rotors. However, the subject of the design of blade geometries, optimized to a design goal, for corotating rotors is currently lacking in the literature. This paper is written from such a design perspective, by extending a previous generalized approach to the aerodynamic optimization of counterrotating rotors to corotating rotors. The previous requirement for upper and lower counterrotating rotor torques to be equal can now be lifted in the case of corotating rotors, enabling improved versatility in the optimization of corotating blade designs. The optimization is demonstrated on an application example to address the conflicting conditions that index angles (high) for aeroacoustic benefits of reduced noise are at odds with those (low) for aerodynamic efficiency. The approach demonstrated in this paper is to set the index angle for reduced noise and then recover back the aerodynamic efficiency by using the newly developed aerodynamic optimization technique.