For several decades the “Saqiye beds” (later renamed Yafo Formation) underlying the Coastal Plain aquifer (Kurkar Group) aquifer of Israel, were regarded as an extremely thick, tectonically undisturbed, and absolutely impervious aquiclude. Following intensive groundwater exploitation from the overlying Kurkar Group aquifer, brackish and saline waters were locally encountered in the lower parts of this aquifer and always at the contact with the underlying Yafo Formation aquiclude. The present study revealed that this aquiclude is not a uniform and impervious rock unit, but rather an alternation of pervious and impervious strata within the Yafo Formation containing highly pressured fluids of different — mostly high — salinities. The permeable beds are at an angular unconformity and in direct contact with the overlying Kurkar Group aquifer. The Yafo Formation and the underlying and overlying rock units are dislocated by numerous fault systems, which facilitate accessibility of brines into the Kurkar Group aquifer. The mobilization of the saline fluids and their injection into the Kurkar Group aquifer could be due either to diffusion of saline fluids occurring in the permeable horizons of the Petah Tiqva Member through the clays of the Yafo Formation or to their upconing following intensive pumping in the Coastal Plain aquifer. It could have also been caused by up-dip movement of saline water as the result of overpressure generated by major accumulation of gas in the permeable horizons. Another possible mechanism could be hydraulic contact with pressurized brines up-flowing along fault zones from deep-seated Jurassic or Cretaceous reservoirs. The squeezing of saline interstitial water from the clays of the Yafo Formation into the overlying Kurkar Group aquifer, is of secondary importance for groundwater salinization (its input is comparable with salt input from rain).
Read full abstract