The influence of climate change on marine organism abundance has rarely been assessed (1) at the functional-group level; (2) simultaneously in major functional groups within the same ecosystem; (3) for >10 years; and (4) at metapopulation/community scales. A study simultaneously addressing these gaps would greatly enhance our understanding of the influence of climate change on marine ecosystems. Here, we analyzed 21 years of abundance data at the functional-group and species levels on a regional scale for four major functional groups (benthic algae, sessile animals, herbivorous benthos, and carnivorous benthos) in a rocky intertidal habitat along the northeastern Pacific coast of Japan. We aimed to examine the 21-year trends in regional abundance at both functional-group and species levels, plus their driving mechanisms and their dependence on species properties (thermal niche, calcification status, and vertical niche). Significant temporal trends in abundance were detected at functional-group levels for benthic algae (increasing) and herbivores and carnivores (both decreasing); they followed the temporal population trends of the dominant species. At species level, the metapopulation size of 12 of 31 species were increasing and 4 of those were decreasing, depending on the thermal niche and species calcification status. At both functional-group and species levels, temporal trends in abundance are caused by the direct or indirect influence of warming and ocean acidification. Comparing these results with community responses to marine heat waves in the same study area offered two implications: (1) long-term ecosystem changes associated with global warming will be unpredictable from the community response to marine heat waves, possibly owing to a lack of knowledge of the influence of calcifying status on species’ responses to climate change; and (2) thermal niches contribute greatly to predictions of the influence of warming on population size, regardless of the time scale.
Read full abstract