Abstract Ulva green tides have adversely affected coastal ecosystems. In June 2023 in Changhua County, Taiwan, an unprecedented floating tubular Ulva bloom spanning about 30 km of coastline caused about 30 % reduction in oyster yield as reported by local farmers. Understanding its taxonomic and ecological basis is crucial for preemptive and remedial measures. Based on molecular (rbcL and tufA) and morphological evidence, U lva meridionalis was the cause of this green tide. Haplotype network analysis (based on ITS) suggests that this green tide originated from northern China via the China Coastal Current. Historical survey data indicate that U. meridionalis arrived in Taoyuan Algal Reef (about 150 km north of the bloom area) as far back as 2018. Our ecophysiological experiments revealed that U. meridionalis exhibited a rapid daily growth rate with biomass increment up to 13–21 % when subjected to local nutrient-rich waters under lower salinity and spring-like conditions. Although historical ecological and poultry/livestock data analyses showed no noticeable change in sea surface temperature and rainfall over the past decade, a gradual rise in agricultural nitrogen and phosphorus output was observed. This taxonomic and ecological background lays the groundwork for long-term ecological monitoring. Moreover, this study exemplifies the detrimental impact of an unforeseen Ulva bloom on oyster farming.
Read full abstract