Microgravity experiments on phase coarsening in solid-liquid mixtures provided an ideal tool to closely and accurately explore the kinetics of phase coarsening because the sedimentation and convective melt flow are eliminated in the International Space Station. In this study, we employed phase-field simulations to systematically investigate the microstructure evolution during phase coarsening at various volume fractions. Simulated microstructure evolution during phase coarsening are compared quantitatively with the microstructure evolution archived from microgravity experiments. Furthermore, kinetics of phase coarsening in Pb-Sn solid-liquid mixtures at various volume fractions is studied theoretically and numerically, which is compared with microgravity experiments. In particular, particle size distribution, relative coarsening rate constants, and scaled maximum particle radii, are predicted from theories, and deduced from microgravity experiments, then calculated from phase-field simulations. This systematic and quantitative study of phase coarsening confirms the consistency to the results from phase-field simulation, microgravity experiments and theories at lower volume fractions, and stimulates more careful microgravity experiments at higher volume fractions (≥0.7).
Read full abstract