The microstructure of an alumina fibre reinforced Al-7wt% Si alloy has been investigated. It was shown that the Al-Si eutectic structure which characterized this alloy was markedly changed by the presence of the fibres, with coarsening of silicon particles and a reduction in primary aluminium grain size. The coarse silicon particles exhibited twinning but no orientation relationship with the aluminium. Fine silicon precipitates were also present and these had a cube-cube orientation relationship with the aluminium lattice. Lath-like intermetallics, FeSiAl5 and FeSi2Al4 with monoclinic and tetragonal structures, were identified which existed in equilibrium and had the epitaxial relationship (001)mono//(001)tet and [100]mono//[100]tet. The iron was a contaminant introduced in the course of composite fabrication. Dislocations were a common feature of the aluminium matrix, with a typical density of ∼4×107mm−2. Nevertheless, dislocation hardening of the metal matrix was not detected. No evidence of Mg2Si precipitates in the metal matrix was found, but the small addition (0.2wt%) of magnesium to the alloy was discovered to segregate at the fibre-aluminium interface. This segregation was believed to result in improved wettability of the two constituents, encouraging the formation of a strong fibre-matrix bond, and producing desirable properties of the composite in the transverse direction.
Read full abstract