Coarse-grained (CG) molecular dynamics simulations are widely used to predict morphological structures and interpret mechanisms of mesoscopic behavior between the scope of traditional experiments and all-atom simulations. However, most current CG force fields (FFs) are not precise enough, especially for polar molecules or functional groups. A main obstacle in developing accurate CG FFs for polar molecules is the freezing problem met at room temperature. In this work, we introduce an indirect parametrization strategy for weakly polar groups by considering their short-chain homologs to avoid freezing. Here, a polar group containing three to four heavy atoms is mapped into one CG bead that is connected to one alkyl bead composed of three or four carbons. The CG beads interact via 4-parameter nonbonded Morse potentials and harmonic bonded potentials. An efficient meta-multilinear interpolation parameterization algorithm, as recently developed by us, is used to rigorously optimize the force parameters. Satisfactory accuracy is witnessed in terms of the density, heat of vaporization, surface tension, and solvation free energy of the homologs of twelve polar molecules, all deviating from the experiment by less than 5%. The transferability of the current FF is indicated by the predicted density, heat of vaporization, and end-to-end distance distributions of fatty acid methyl esters composed of multiple functional groups parameterized in this work.
Read full abstract