Gas cyclones are common device in various industries to separate solid particles and/or droplets from gas streams. Nonetheless, the mathematical modelling of gas cyclone has been very challenging since huge number of multi-sized particles are involved in the system. In this work, a numerical study of the gas–solid flow in a gas cyclone with wide range of particle size distribution (from 1 to 200 µm) is carried out by developing a coarse-grained combined Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD) model. It shows that the coarse-grained CFD-DEM model is able to capture the typical flow features in a gas cyclone including the solid strands and dust ceiling phenomena. It also shows that modelling of van der Waals force is critical for the prediction of separation efficiency in gas cyclone especially for fine particles. Furthermore, it is tried to explain how the dust ceiling is formed.