Oxy-coal combustion is a viable technology, for new and existing coal-fired power plants, as it facilitates carbon capture and, thereby, can mitigate climate change. Pulverized coals of various ranks, biomass, and their blends were burned to assess the evolution of combustion effluent gases, such as NOx, SO2, and CO, under a variety of background gas compositions. The fuels were burned in an electrically heated laboratory drop-tube furnace in O2/N2 and O2/CO2 environments with oxygen mole fractions of 20%, 40%, 60%, 80%, and 100%, at a furnace temperature of 1400 K. The fuel mass flow rate was kept constant in most cases, and combustion was fuel-lean. Results showed that in the case of four coals studied, NOx emissions in O2/CO2 environments were lower than those in O2/N2 environments by amounts that ranged from 19 to 43% at the same oxygen concentration. In the case of bagasse and coal/bagasse blends, the corresponding NOx reductions ranged from 22 to 39%. NOx emissions were found to increase with increa...
Read full abstract