Abstract

This work examined the particulate emissions from pulverized coals burning under either conventional or oxyfuel combustion conditions. Oxyfuel combustion is a process that takes place in O2/CO2 environments, which are achieved by removing nitrogen from the intake gases and recirculating large amounts of flue gases into the boiler; this is done to moderate the high temperatures caused by the elevated oxygen partial pressure therein. In this study, combustion took place in a laboratory laminar-flow drop-tube furnace (DTF) in environments containing various mole fractions of oxygen in either nitrogen or carbon dioxide background gases. A bituminous coal, a sub-bituminous coal, and a lignite were burned at a DTF temperature of 1400 K. Trimodal ash particle size distributions were observed with peaks in the submicrometer region (∼0.2 μm), as well as in the supermicrometer region (∼5 μm and >10 μm). Both submicrometer and supermicrometer particulate emission yields of all three coals were typically lower in O2/CO2 than in O2/N2 environments. Emission yields typically increased with increasing oxygen concentration in the furnace, with an exception noted at moderate oxygen mole fractions (20%–30%) in CO2, where significant amounts of unburned carbon were detected. Submicrometer particulate yields were found to be comparable in the effluents of all three coals, independently of their ash contents, whereas supermicrometer particulate yields were nearly analogous to the ash contents of the three coals. Scanning electron microscopy (SEM) revealed that submicrometer particles were spherical, whereas supermicrometer particles were often of irregular shapes, fractured spheres, and spheres with small particles attached to their surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.