AbstractDialcohol cellulose can be prepared by periodate-mediated oxidation of cellulose followed by reduction with borohydride. The two-step reaction creates a modified cellulose polymer which is ring-opened between the C2 and C3 carbons in the glucose unit. This material has attracted both scientific and commercial interest, due to its potential role in the transition towards a fossil-fuel-free society. In order to become a reliable component in the materials of tomorrow, chemical properties such as degree of modification must be accurately quantified. In this work we describe how solid-state NMR spectroscopy, enhanced by dynamic nuclear polarization (DNP), can be used for this purpose. Our results illustrate that it is possible to obtain high sensitivity enhancements in dialcohol cellulose with the DNP enhanced solid-state NMR technique. Enhancements above a factor of fifty, on a 400 MHz/263 GHz DNP system in the presence of 12 mM AMUPol radical were achieved. This allows us to quantify the degree of modification in dialcohol cellulose samples in time spans as short as 20 min using DNP enhanced multiple-contact cross polarization experiments. We also exemplify how DNP enhanced, 13C-13C dipolar recoupling experiments can be used for the same purpose and for studying chemical shift correlations in dialcohol cellulose. Graphical abstract
Read full abstract