Abstract
High-field magic angle spinning (MAS) dynamic nuclear polarization (DNP) is becoming a common technique for improving the sensitivity of solid-state nuclear magnetic resonance (SSNMR) by the hyperpolarization of nuclear spins. Recently, we have shown that gamma irradiation is capable of creating long-lived free radicals that are amenable to MAS DNP in quartz and a variety of organic solids. Here, we demonstrate that ball milling is able to generate millimolar concentrations of stable radical species in diverse materials such as polystyrene, cellulose, borosilicate glass, and fused quartz. High-field electron paramagnetic resonance (EPR) was used to obtain further insight into the nature of the radicals formed in ball milled quartz and borosilicate glass. We further show that radicals generated in quartz by ball milling can be used for solid-effect DNP. We obtained 29Si DNP enhancements of approximately 114 and 33 at 110 K and room temperature, respectively, from a sample of ball milled quartz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.