Coalbed Methane (CBM) accounts for about 5% of China’s domestic gas supply, which has been regarded as one of the most promising energies for alleviating the energy supply–demand imbalance. Deep CBM reservoirs have the characteristics of low permeability, low porosity, and low water saturation, which easily experience reservoir damage during the drilling process, further affecting the gas productivity. Based on the analysis of coal mineral composition, pore structure distribution, and the surface micromorphology change in coal surface before and after hydration, a possible mechanism for CBM formation damage was revealed. It was found that the damage caused by drilling fluid intrusion can be divided into three stages: stripping, migration, and plugging. Based on the water-sensitive, acid-sensitive, and stress-sensitive evaluation tests, a novel anti-waterblocking agent with both wettability alteration and surface tension reduction was developed; then a reservoir protection drilling fluid for deep coal formation in Daning-Jixian block was constructed; then the reservoir protection performance of drilling fluid was evaluated. The results show that as the concentration of the anti-waterblocking agent FSS increases from 0% to 1%, the surface tension of the water phase is significantly reduced from 72.15 mN/m to 26.58 mN/m, while the maximum contact angle of water on the surface reaches 117°. This enhancement in wettability leads to an improvement in the permeability recovery rate from 56.6% to 80.0%, indicating a substantial reduction in waterblocking effects and better fluid mobility within the reservoir. These findings highlight the efficacy of FSS in mitigating formation damage and optimizing gas production in coalbed methane reservoirs. The drilling fluid has good wettability alteration, inhibition, and sealing performance, which is of great significance for protecting gas well productivity.
Read full abstract