In order to prevent coal mine water inrush accidents, it is necessary to appropriately assess the water abundance of coal mines based on drilling and geophysical data. This paper studied a comprehensive risk assessment method of water inrush. First, a water inrush risk index was proposed based on the analytic hierarchy process-entropy method (AHP-EM) and the water-rich structure index was proposed based on the geological data coupled calculation, then weighted two indices above which established the comprehensive water inrush risk assessment method. Secondly, eight factors were chosen as risk control factors of water inrush: core recovery, aquifer thickness, distance from the indirect aquifer to the coal seam, aquiclude thickness, height of water-conducting fracture zone, sand-mud ratio, total layers of aquifer and aquiclude, and the equivalent thickness of sandstone. Finally, the No. 2 coal seam of Dahaize coal mine was taken as the research object, the factors were calculated, and a comprehensive water inrush assessment model was constructed. With site investigation and observation, the water inrush risk assessment model of the No.2 coal seam roof is consistent with the actual mining situation, which verifies the validity of the model. In addition, this method was used to evaluate the water-richness of the weathered bedrock fractured aquifer in the Zhangjiamao coal mine. The practical application of the two mines has verified the generality of the approach. The research could provide scientific assistance for mine water hazard mitigation and mining safety.