A high-resolution seismic survey (HRSS) is often used in coal exploration to bridge the data gap between two consecutive boreholes and avoid ambiguity in geological interpretation. The application of high-resolution seismic surveys in the Indian context is challenging as the delineation of thin non-coal layers within the coal layer requires a very high seismic data resolution. However, conventional seismic processing techniques fail to resolve thin coal/non-coal layers and faults, which is crucial for the precise estimation of coal resources and mine economics. To address these issues, we applied the inverse continuous wavelet transform deconvolution (ICWT-Decon) technique to post-stack depth-migrated seismic sections. We examined the feasibility of the ICWT-Decon technique in both a synthetic post-stack depth-migrated model and 2D/3D seismic data from the North Karanpura and Talcher Coalfields in Eastern India. The results offered enhanced seismic sections, attributes (similarity and sweetness), and acoustic inversion that aided in the precise positioning of faults and the delineation of a thin non-coal layer of 4.68 m within a 16.7 m coal seam at an approximate depth of 450 m to 550 m. This helped in the refinement of the resource estimation from 74.96 MT before applying ICWT-Decon to 55.92 MT afterward. Overall, the results of the study showed enhancements in the seismic data resolution, the better output of seismic attributes, and acoustic inversion, which could enable more precise lithological and structural interpretation.