Microbial electrosynthesis (MES) shows great promise for converting CO2 into high-value chemicals. However, cathode biofilm erosion by high CO2 sparging and the unclear role of plankton in MES hinders the continuous improvement of its performance. This study aims to enhance biofilm resistance and improve interactions between bio-cathode and plankton by upgrading waste algal biomass into 3-D porous algal electrode (PAE) with rough surface. Results showed that the acetate synthesis of PAE under 20 mL/min CO2 sparging (PAE-20) was up to 3330.61 mol/m3, 4.63 times that of carbon felt under the same conditions (CF-20). The microbial loading of PAE-20 biofilm was twice that of CF-20. Furthermore, higher cumulative abundance of functional microorganisms was observed in plankton of PAE-20 (55 %), compared to plankton of CF-20 (14 %), and enhanced biocathode-plankton interactions significantly suppressed acetate consumption. Thus, this efficient and sustainable 3-D electrode advances MES technology and offers new perspectives for waste biomass recycling.
Read full abstract