This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 200316, “Joint Optimization of Well Completions and Controls for CO2 Enhanced Oil Recovery and Storage,” by Bailian Chen, SPE, and Rajesh Pawar, Los Alamos National Laboratory, prepared for the 2020 SPE Improved Oil Recovery Conference, originally scheduled to be held in Tulsa 18–22 April. The paper has not been peer reviewed. Carbon dioxide (CO2) storage through CO2 enhanced oil recovery (EOR) has been considered an option for larger-scale deployment of CO2 storage because of the economic benefits of oil recovery, 45Q tax credits, and the use of existing infrastructure. The complete paper investigates how optimal reservoir management and operation strategies can be used to optimize both CO2 storage and oil recovery. Results of the authors’ study showed that joint optimization of well completions and well controls can achieve a higher final net present value (NPV) than that obtained from the optimization of well controls only. Introduction In CO2 EOR associated with storage processes, poorly designed well-operating conditions or completions can lead to low oil recovery factors and suboptimal CO2 storage. Co-optimization of oil production and CO2 storage has been recognized as a feasible technique to maximize benefit in terms of oil production and CO2 storage tax credit. To the best of the authors’ knowledge, settings for well completions have not been considered as optimization variables in a CO2 EOR and storage co-optimization process. The objective of this study is to conduct joint optimization of well completions and controls [well rates or bottomhole pressures (BHP)] that maximize life-cycle NPV in CO2 EOR and storage processes and demonstrate the superiority of joint optimization over well-control-only optimization. Optimization Problem In this study, the optimization problem considered is the joint optimization of well completions and well controls for a CO2 EOR and storage process. The mathematical process behind this determination is detailed in the complete paper. The optimization problem was focused on jointly estimating the well completions (i.e., fraction of injection/production well perforations in each reservoir layer) and CO2 injection and oil-production controls that maximize NPV in a CO2 EOR and storage operation. The authors used a newly developed stochastic simplex approximate gradient algorithm to solve the optimization problem. The performance of the joint optimization approach was compared with the performance of the well-control-only optimization approach. In addition, the performance of the co-optimization of CO2 storage and oil-recovery approach was compared with that of the maximization of only-CO2-storage and only-oil-recovery approaches.
Read full abstract