Present work details the determination of three phase hydrate equilibrium data (H-L-V) using temperature search method for the binary CO2/CH4 gas mixture (50:50 molar ratio) in presence of 1,3 dioxolane (DIOX). DIOX concentration used for phase equilibrium determination were 1,3 and 5.56 mol% respectively. In the presence of DIOX, it was observed that phase equilibrium curve was shifted right with respect to the curve using same gas mixture with no additive (pure water). This indicates that the presence of DIOX moderates the hydrate formation equilibrium conditions. Also, as DIOX concentration increases from 1 mol% to 5.56 mol%, a decrement in phase equilibrium pressure at same temperatures was observed, confirming the potential of DIOX as an effective thermodynamic promoter. Enthalpy of hydrate dissociation was calculated for CO2/CH4 gas mixture in presence of DIOX using Clausius- Clapeyron plot and it was found to be 90.81±6.55 KJ/mol which confirms the sII structure of CO2-CH4-DIOX mixed hydrate. Besides providing the phase equilibrium data of formed hydrates with CO2/CH4 gas mixture using different concentration of DIOX, the present study will aid in determining suitable experimental conditions for examining kinetics and performing separation studies of CO2/CH4 gas mixture through hydrate formation.