A scientific carbon accounting system can help enterprises reduce carbon emissions. This study took an enterprise in the Yangtze River basin as a case study. The accounting classification of carbon emissions in the life cycle of lime production was assessed, and the composition of the sources of carbon emission was analyzed, covering mining explosives, fuel (diesel, coal), electricity and high-temperature limestone decomposition. Using the IPCC emission factor method, a carbon life cycle emission accounting model for lime production was established. We determined that the carbon dioxide equivalent from producing one ton of quicklime ranged from 1096.68 kg CO2 equiv. to 1176.96 kg CO2 equiv. from 2019 to 2021 in the studied case. The decomposition of limestone at a high temperature was the largest carbon emission source, accounting for 64% of the total carbon emission. Coal combustion was the second major source of carbon emissions, accounting for 31% of total carbon emissions. Based upon the main sources of carbon emission for lime production, carbon emission reduction should focus on CO2 capture technology and fuel optimization. Based on the error transfer method, we calculated that the overall uncertainty of the life cycle carbon emissions of quicklime from 2019 to 2021 are 2.13%, 2.07% and 2.09%, respectively. Using our analysis of carbon emissions, the carbon emission factor of producing one unit of quicklime in the lime enterprise in the Yangtze River basin was determined. Furthermore, this research into carbon emission reduction for lime production can provide a point of reference for the promotion of carbon neutrality in the same industry.