Co-pyrolysis of biomass/plastics is a viable method to obtain high-quality carbon materials. The synergistic effect in the char production process of co-pyrolysis of biomass/plastics affects the properties of the obtained char. However, the synergistic effect research on the char production process of co-pyrolysis of biomass/plastics is facing challenges owing to highly varying composition of different plastics. In this study, the synergistic effect during co-pyrolysis of bamboo (BM) and plastics (polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), polycarbonate (PC), and polybutylene terephthalate (PBT)) was investigated. TG results showed that PP, PS, PET, and PBT promoted the release of biomass volatiles and increased co-pyrolysis char yield. Notably, the O-aromatic structure in PC underwent cleavage and deoxygenation reactions, inhibiting the production of co-pyrolysis char during co-pyrolysis process. Char yield from co-pyrolysis process decreased from 24.80% for bamboo pyrolysis to 15.74% for co-pyrolysis of bamboo/PC. The results of physicochemical tests on char samples indicated that the addition of polyhydrocarbon plastics (PP and PS) increased H/C ratio, O/C ratio, heating value and oxidative reactivity of the char compared to bamboo char due to the vapor deposition of hydrocarbons derived from thermal decomposition of plastics on the biomass char. While, co-pyrolysis of biomass and polyester plastics (PET, PC, PBT) improved the pore structure of char and increased oxygen content.
Read full abstract