Abstract

In this work, the interaction between waste cypress sawdust (WCS) and coal liquefaction residue (CLR), a type of industrial solid waste, during co-pyrolysis was studied by thermogravimetry-mass spectrometry (TG-MS) and pyrolysis-gas chromatography mass spectrometry (Py-GC/MS). The gasification reaction characteristics of co-pyrolysis char were also evaluated. The results showed that both promoting and inhibiting effects existed in the co-pyrolysis process of WCS and CLR. When the pyrolysis temperature was less than 420 °C, the catalysis of minerals was conducive to the pyrolysis reaction. At higher temperatures, the polycondensation and carbonization produced by the interaction between the components inhibited the release of volatiles. The gasification reactivity of co-pyrolysis char was better than that of individual WCS and CLR chars. The synergistic effect was most obvious when the blending ratio of WCS to CLR was 3:1. In the gasification process of co-pyrolysis char, the WCS component with better reactivity preferentially reacted to form an abundant pore structure, which exposed more reactive sites and promoted the diffusion and mass transfer of gasification agent. Moreover, alkali and alkaline earth metal species in WCS and iron bearing minerals in CLR can catalyze the gasification reaction, contributing to the synergistic effect. Therefore, the addition of a suitable solid waste to biomass waste can improve the energy efficiency and simultaneously achieve solid waste utilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.