Understanding the molecular level foundations of CO2 capture and conversion might unveil design strategies for efficient materials for these key decarbonization technologies. The control over the reaction channel in the complex network of reactions to produce selectively and on-demand chemicals from CO2 via electrocatalysis is appealing to scientists worldwide on a fundamental and technological level. Operando techniques have become very popular to help achieve this goal as demonstrated by a flourishing number of dedicated studies [1-3] and other initiatives for discussion [4-6]. In this contribution, I will present recent work on the spectroscopic characterisation of the CO2 interaction with several prototypical nanostructural systems of relevance, [7-11] emphasising characteristic spectroscopic fingerprints and their critical assessment. This contribution aims to discuss opportunities and current limitations encountered in situ X-ray methods to extract mechanistic insights.[1] Y. Han, H. Zhang, Y. Yu, Z. Liu, In Situ Characterization of Catalysis and Electrocatalysis Using APXPS, ACS Catalysis, 11 (2021), 1464-1484.[2] V. Pfeifer, M. Hävecker, J. J. Velasco Vélez, A. Knop-Gericke, R. Schlögl, R. Arrigo, An in situ electrochemical cell for studying OER materials, Topics in Catalysis, 61 (2019), 2064-2084.[3] G. Held, F. Venturini, D. C. Grinter, P. Ferrer, R. Arrigo, L. Deacon, W. Quevedo Garzon, K. Roy, A. Large, C. Stephens, A. Watts, P. Larkin, M. Hand, H. Wang, L. Pratt, J. J. Mudd, T. Richardson, S. Patel, M. Hillman and S. Scott, Ambient-pressure end station of the Versatile Soft X-ray (VerSoX) beamline at Diamond Light Source, J. Synchrotron Rad., 27 (2020), 1153-1166.[4] R. Arrigo, A. Logsdail, L. Torrente-Murciano, Highlights from Faraday Discussion on Designing Nanoparticle Systems for Catalysis, London, UK, May 2018, (Conference Report) Chem. Commun., 2018, 54, 9385-9393DOI: 10.1039/C8CC90324G;[5] R. Arrigo et al., The challenges of characterising nanoparticulate catalysts: general discussion Faraday Discussion, 208 (2018), 339-394.[6] C. R. A. Catlow, P. wells, D. Gianolio Synchrotron radiation techniques in catalytic science, Phys. Chem. Chem. Phys., 22 (2020), 18745-18746.[7] R. Arrigo, R. Blume, V. Streibel, C. Genovese, A. Roldan, M. E. Schuster, C. Ampelli, S. Perathoner, J.-J. Velasco-Vélez, M. Hävecker, A. Knop-Gericke, R. Schlögl, G. Centi, Dynamics at Polarized, Carbon Dioxide/Iron Oxyhydroxide Interfaces Unveil the Origin of Multicarbon Product Formation, ACS Catalysis, 12 (2021) 411-430.[8] J.-J. Velasco-Vélez, T. Jones, D. Gao, E. Carbonio, R. Arrigo, C.-J. Hsu, Y.-C. Huang, C.-L. Dong, J.-M. Chen, J.-F. Lee, P. Strasser, B. Roldan Cuenya, R. Schlögl, A. Knop-Gericke, C.-H. Chuang, The Role ofthe Copper Oxidation State in the Electrocatalytic Reduction of CO2 into Valuable Hydrocarbons, ACS Sustainable Chem. Eng., 7 (2019), 1485–1492.[9] J.-J. Velasco-Vélez, C.-H. Chuang, D. Gao, Q. Zhu, D. Ivanov, H. S. Jeon, R. Arrigo, R. V. Mom, E. Stotz, H.-L. Wu, T. E. Jones, B. Roldan Cuenya, A. Knop-Gericke, R. Schlögl, On the activity/selectivity and phase stability of thermally grown copper oxides during the electrocatalytic reduction of CO2, ACS Catalysis, 10 (2020) 11510-11518.[10] J-J. Velasco-Velez, R.V. Mom, L.-E. Sandoval-Diaz, L. J. Falling, C.-H. Chuang, D. Gao, T. E. Jones, Q. Zhu, R. Arrigo, B. Roldan Cuenya, A. Knop-Gericke, T. Lunkenbein, R. Schlögl, Revealing the ActivePhase of Copper during the Electroreduction of CO2 in Aqueous Electrolyte by Correlating In Situ X-ray Spectroscopy and In Situ Electron Microscopy, ACS Energy Lett., 5 (2020), 2106–2111.[11] R. Arrigo, R. Blume, A. Large, J.-J. Velesco-Velez, M., Haevecker, A. Knop-Gericke, G. Held, Dynamics over a Cu-graphite electrode during the gas-phase CO2 reduction investigated by APXPS, Faraday Discuss., 236 (2022) 126-140.