Abstract

The successful electrochemical reduction of CO2 (eCO2R) into valuable fuels and chemicals relies on the development of low-cost, effective carbon-bonded metal catalysts. Carbon-bonded metal catalysts are crucial for efficient eCO2R due to their dual functionality—high electrical conductivity from carbon and catalytic activity from the metal. In this study, a facile hydrothermal method was used to synthesize carbon-derived bismuth oxide nanospheres (C-BiOx) on porous nickel foam (NF) electrodes as electrocatalysts for eCO2R. The eCO2R activity of this catalyst was evaluated in H-type cells and compared with commercially available Pd/C and Ag-nanoparticle catalysts. Our finding revealed that C-BiOx/NF exhibited a higher eCO2R activity (corresponding to the CO Faradaic efficiency (FE) of 16.2 % at −1 V vs. reversible hydrogen electrode (RHE) and HCOOH FE of 85.4 % at −0.7 V vs. RHE) than those of the Ag nanoparticle-based and Pd/C catalysts. Mechanistic insights from DFT-based studies further supported the enhanced catalytic activity of C-BiOx for HCOOH production over Ag catalysts. The fabricated catalyst was further utilized in a zero-gap CO2 electrolyzer for gas-phase CO2 reduction containing a self-supporting C-BiOx/NF gas diffusion layer (GDL). An anion exchange membrane-based CO2 electrolyzer demonstrated a higher FE for CO formation (47.1%) with an energy efficiency (EE) of 29.5% as compared to those of a polymer electrolyte membrane-based CO2 electrolyzer (FE: 25.2%, EE: 18.4%). Notably, the C-BiOx/NF catalyst exhibited remarkable stability (8 h) in the gas-phase GDL compared to that observed during the liquid-phase eCO2R. Our work provides new insights into utilizing improved catalyst designs in conjunction with flow cells for successful commercial implementation of this promising technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call