Abstract

Design of efficient catalysts for electrochemical reduction of carbon dioxide (CO2) with high selectivity and activity is of great challenge, but significant for managing the global carbon balance. Herein, a series of three-dimensional (3D) single-atom metals anchored on graphene networks (3D SAM-G) with open-pore structure were successfully mass-produced via a facile in-situ calcination technique assisted by NaCl template. As-obtained 3D SANi-G electrode delivers excellent CO Faradaic efficiency (FE) of >96% in the potential range of −0.6 to −0.9 V versus reversible hydrogen electrode (RHE) and a high current density of 66.27 mA cm−2 at −1.0 V versus RHE, outperforming most of the previously reported catalysts tested in H-type cells. Simulations indicate that enhanced mass transport within the 3D open-pore structure effectively increases the catalytically active sites, which in turn leads to simultaneous enhancement on selectivity and activity of 3D SANi-G toward CO2 electroreduction. The cost-effective synthesis approach together with the microstructure design concept inspires new insights for the development of efficient electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.