The combustion behavior of biomass as a fuel varies dependent on source of the raw material, but also on the type of pre-treatment. In this work steam exploded and torrefied woody biomass were studied with respect to NOx formation in co-firing experiments. Most of the reported data is based on small scale experiments and simulations. In this work, however, have three different cases been investigated experimentally in a 1.5MWth combustor supported by reaction simulations. One case corresponds to firing 100% Utah bituminous coal and two cases where 15% of the coal (on a mass basis) has been replaced with either torrefied or steam exploded biomass. Two of the cases was also studied in a utility scale 1.3 GWth industrial boiler. In both units did the case with pure coal result in the highest amount of NO formed, which was expected due to the higher amount of fuel-bound nitrogen in the coal, as compared to the biomass fuels. The fuel analyses indicate that the nitrogen content is the same in the two investigated biofuels. However, the amount of NO formed differed. Gas composition measurements reveal that the partitioning of volatile nitrogen species (HCN and NH3) varies between the biomass co-firing cases. This was investigated further using detailed reaction simulations and is suggested as the main reason for the observed difference in NO formation.
Read full abstract