This study aimed to assess the erectogenic properties of isoliquiritigenin taking sildenafil (SDF) as the standard. The binding affinity of isoliquiritigenin (ISL) with the erectile marker proteins (endothelial nitric oxide synthase [eNOS] and enzyme phosphodiesterase type 5 [PDE5]) was investigated using Autodock Vina, which was validated using molecular dynamics simulation. Furthermore, the effect of ISL on the eNOS and PDE5 messenger ribonucleic acid (mRNA) expression and the sexual behavior of mice was investigated, along with the assessment of the pharmacokinetics of ISL. The results revealed that the binding affinity of ISL-eNOS/PDE5 and SDF-eNOS/PDE5 was in the range of -7.5 to -8.6 kcal/mol. The ISL-eNOS/PDE5 complexes remained stable throughout the 100 ns simulation period. Root mean square deviation, Rg, SASA, hydrogen, and hydrophobic interactions were similar between ISL-eNOS/PDE5 and SDF-eNOS/PDE5. Analysis of mRNA expressions in paroxetine (PRX)-induced ED mice showed that the co-administration of PRX with ISL reduced PDE5 and increased eNOS mRNA expression, similar to the co-administered group (PRX+SDF). The sexual behavior study revealed that the results of PRX+ISL were better than those of the PRX+SDF group. Pharmacokinetic evaluation further demonstrated that ISL possesses drug-like properties. The results showed that ISL is equally potent as SDF in terms of binding affinity, specific pharmacological properties, and modulating sexual behavior.
Read full abstract