Enhancement of processes ranging from gas sorption to ion conduction in a liquid can be substantial upon nanoconfinement. Here, the dynamics of a polar aprotic solvent, 1-methylimidazole (MeIm), in mesoporous silica (2.8, 5.4, and 8.3 nm pore diameters) were examined using femtosecond infrared vibrational spectroscopy and molecular dynamics simulations of a dilute probe, the selenocyanate (SeCN-) anion. The long vibrational lifetime and sensitivity of the CN stretch enabled a comprehensive investigation of the relatively slow time scales and subnanometer distance dependences of the confined dynamics. Because MeIm does not readily donate hydrogen bonds, its interactions in the hydrophilic silanol pores differ more from the bulk than those of water confined in the same mesopores, resulting in greater structural order and more dramatic slowing of dynamics. The extent of surface effects was quantified by modified two-state models used to fit three spatially averaged experimental observables: vibrational lifetime, orientational relaxation, and spectral diffusion. The length scales and the models (smoothed step, exponential decay, and simple step) describing the transitions between the distinctive shell behavior at the surface and the bulk-like behavior at the pore interior were compared to those of water. The highly nonuniform distributions of the SeCN- probe and antiparallel layering of MeIm revealed by the simulations guided the interpretation of the results and development of the analytical models. The results illustrate the importance of electrostatic effects and H-bonding interactions in the behavior of confined liquids.