Imagining natural scenes enables us to engage with a myriad of simulated environments. How do our brains generate such complex mental images? Recent research suggests that cortical alpha activity carries information about individual objects during visual imagery. However, it remains unclear if more complex imagined contents such as natural scenes are similarly represented in alpha activity. Here, we answer this question by decoding the contents of imagined scenes from rhythmic cortical activity patterns. In an EEG experiment, participants imagined natural scenes based on detailed written descriptions, which conveyed four complementary scene properties: openness, naturalness, clutter level and brightness. By conducting classification analyses on EEG power patterns across neural frequencies, we were able to decode both individual imagined scenes as well as their properties from the alpha band, showing that also the contents of complex visual images are represented in alpha rhythms. A cross-classification analysis between alpha power patterns during the imagery task and during a perception task, in which participants were presented images of the described scenes, showed that scene representations in the alpha band are partly shared between imagery and late stages of perception. This suggests that alpha activity mediates the top-down re-activation of scene-related visual contents during imagery.