Abstract

Indoor positioning systems are essential in the industrial domain for optimized production and safe operation of mobile elements, such as mobile robots, especially in the presence of static machinery and human operators. In this paper, we assess the performance of a commercial UWB radio-based positioning system deployed in a realistic industrial scenario, considering both static and mobile use cases. Our goal is to characterize the accuracy of this system in the context of industrial use cases and applications. For the static case, an extensive analysis was presented based on measurements performed at 72 measurement positions at 3 different heights (above, at similar a level to, and below the average clutter level) in different industrial clutter conditions (open and cluttered spaces). The extensive analysis in the mobile case considered several runs of a route covered by an autonomous mobile robot equipped with multiple tags in different positions. The results indicate that a similar degree of accuracy with a median 2D positioning error smaller than 20 cm is possible in both static and mobile conditions with an optimized anchor deployment. The paper provides a complete statistical characterization of the system’s accuracy and addresses the multiple deployment trade-offs and system dynamics observed for the different configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.