Ubiquitin immunoreactive (UBQ-ir) inclusions were present to variable extents in the inferior olivary nucleus (ION) in 37/48 (77%) patients with frontotemporal lobar degeneration (FTLD), in 10/11 (91%) patients with motor neurone disease (MND), in 5/5 (100%) patients with Alzheimer's disease (AD), 5/7 (71%) patients with dementia with Lewy bodies, 13/19 (68%) patients with Parkinson's disease, 11/11(100%) patients with Progressive Supranuclear Palsy, 2/6 (33%) patients with Multisystem Atrophy, 1/3 (33%) patients with Huntington's disease and in 14/14 (100%) normal elderly control subjects. In FTLD, UBQ-ir inclusions were present in 26/32 (81%) patients with FTLD-U, in 10/15 (67%) patients with tauopathy, and in the single patient with Dementia Lacking Distinctive Histology. In 13 FTLD-U patients, and in a single AD and in 2 MND patients, the UBQ-ir inclusions had a rounded, spicular or skein-type appearance, and these were also TDP-43 immunoreactive (TDP-43-ir). In all other affected patients in all diagnostic groups, and in control subjects, the UBQ-ir neuronal cytoplasmic inclusions (NCI) were of a conglomerated type, resembling a cluster of large granules or globules, but were never TDP-43-ir. In 3 of the 13 FTLD-U patients with spicular NCI, conglomerated NCI were also present but in separate cells. Double-labelling immunohistochemistry, and confocal microscopy, for UBQ and TDP-43 confirmed that only the spicular UBQ-ir inclusions in patients with FTLD-U, AD and MND contained TDP-43, though in these patients there were occasional TDP-43 immunoreactive inclusions that were not UBQ-ir. Nuclear TDP-43 immunoreactivity was absent in ION in FTLD-U, AD or MND when TDP-43 cytoplasmic inclusions were present, but remained in neurones with UBQ-ir, TDP-43 negative inclusions. The target protein within the UBQ-ir, TDP-43-negative inclusions remains unknown, but present studies indicate that this is not tau, neurofilament or internexin proteins. These TDP-43 negative, UBQ-ir inclusions appear to be more related to ageing than neurodegeneration, and are without apparent diagnostic significance. The pathophysiological mechanism leading to their formation, and any consequences their presence may have on nerve cell function, remain unknown.