Assume that K is an algebraically closed field and denote by KG(R) the Krull-Gabriel dimension of R, where R is a locally bounded K-category (or a bound quiver K-algebra). Assume that C is a tilted K-algebra and Cˆ,Cˇ,C˜ are the associated repetitive category, cluster repetitive category and cluster-tilted algebra, respectively. Our first result states that KG(C˜)=KG(Cˇ)≤KG(Cˆ). Since the Krull-Gabriel dimensions of tame locally support-finite repetitive categories are known, we further conclude that KG(C˜)=KG(Cˇ)=KG(Cˆ)∈{0,2,∞}. Finally, in the Appendix Grzegorz Bobiński presents a different way of determining the Krull-Gabriel dimension of the cluster-tilted algebras, by applying results of Geigle.
Read full abstract