This research aimed to classify achievement factors for electrical engineering students at Tidar University using K-Means and Agglomerative Clustering classification algorithms. The goal was to understand if any parameters influence high-achieving student performance. The Indonesian government and private sector for university students provide significant education funds. Student scholarships are awarded based primarily on GPA and entry path, overburdening staff and causing confusion during distribution to eligible recipients. A system was needed to accommodate additional eligible criteria. The researcher selected factors to identify engineering student performance, including school origin, entry path, tuition fees, and GPA. These inputs could determine graduation status. The results compared calculation methods based on collected data accuracy, processing times, and characterizing clustered data to determine the best classification method. Agglomerative Hierarchical Clustering performed better. Accuracy testing on 600 training data points yielded 73.94% for improved K-means and 90.42% for AHC. The Average processing time was 674.92 seconds for improved K-means and 554.35 seconds for AHC. Silhouette testing also characterized calculation methods, with improved K-means scoring best at 0.654 and AHC at 0.787 using two clusters.
Read full abstract