Abstract
Abstract Clustering in energy markets is a top topic with high significance on expert and intelligent systems. The main impact of is paper is the proposal of a new clustering framework for the automatic classification of electricity customers’ loads. An automatic selection of the clustering classification algorithm is also highlighted. Finally, new customers can be assigned to a predefined set of clusters in the classification phase. The computation time of the proposed framework is less than that of previous classification techniques, which enables the processing of a complete electric company sample in a matter of minutes on a personal computer. The high accuracy of the predicted classification results verifies the performance of the clustering technique. This classification phase is of significant assistance in interpreting the results, and the simplicity of the clustering phase is sufficient to demonstrate the quality of the complete mining framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.