AbstractEntrainment and detrainment rates (ε and δ) constitute the most critical free parameters in mass flux schemes commonly employed for cumulus parameterizations. Recently, Zhu et al. (2021) introduced a new approach that utilizes aircraft observations to simultaneously estimate ε and δ for cumulus clouds, overcoming the limitation of other observation‐based approaches that solely yield ε without offering insights into δ. This study aims to comprehensively evaluate the reliability of this new approach. First, evaluation using an Explicit Mixing Parcel Model demonstrates the capability of the new approach to back‐calculate predetermined ε and δ based on the physical properties before and after the entrainment mixing. Second, evaluation using large‐eddy simulations illustrates that the new approach yields consistent ε and δ profiles compared to the traditional approach. Sensitivity tests indicate a weak sensitivity of the estimated δ with the new approach to the entrained air source. A decrease in the proportion of cloudy air in the assumed detrained air leads to a reduction in the estimated δ, while ε remains unaffected. Finally, the most appropriate assumptions for entrained and detrained air are discussed. Estimating ε for cumulus parameterizations involves acquiring ambient air more than 500 m away from the cloud edge as entrained air. Due to implicit mean field approximations in the traditional approach, determining the optimal assumption for detrained air properties proves challenging. This study confirms the reliability of the new approach in estimating ε and δ, providing confidence in its application to extensive observational data and advancement in parameterization.
Read full abstract