Abstract Representations for the surface area of ice particles in terms of the projected area have been developed using two different methods. The first method uses ice particles that are imaged in situ and geometric calculations that are based on the outline of the two-dimensional image of the particle. The second method uses computer-generated ice particle shapes and calculates the total surface area analytically. The results of the second method compare reasonably well with the results of the first method. Surface area estimates for individual particles were combined with particle size distribution and projected area measurements from the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL)–Florida Area Cirrus Experiment (FACE) field project to give total surface area estimates for observed ice particle populations. Population surface area estimates were also made from balloon-borne replicator data collected during the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment, phase II (FIRE-II). A relationship between the particle population surface area and projected area (cloud extinction) has been derived. The total particle surface area for particle populations is estimated to be between 8 and 10 times the projected area or between 4 and 5 times the extinction and has a small dependence on the properties of the particle size distribution for particles observed in random orientations.
Read full abstract