One of the features of Baxter’s Q-operators for many closed spin chain models is that all transfer matrices arise as products of two Q-operators with shifts in the spectral parameter. In the representation-theoretical approach to Q-operators, underlying this is a factorization formula for L-operators (solutions of the Yang–Baxter equation associated to particular infinite-dimensional representations). To extend such a formalism to open spin chains, one needs a factorization identity for solutions of the reflection equation (boundary Yang–Baxter equation) associated to these representations. In the case of quantum affine sl2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathfrak {sl}_2$$\\end{document} and diagonal K-matrices, we derive such an identity using the recently formulated theory of universal K-matrices for quantum affine algebras.