This work focuses on control of multi-input multi-output (MIMO) nonlinear processes with uncertain dynamics and actuator constraints. A Lyapunov-based nonlinear controller design approach that accounts explicitly and simultaneously for process nonlinearities, plant-model mismatch, and input constraints, is proposed. Under the assumption that all process states are accessible for measurement, the approach leads to the explicit synthesis of bounded robust multivariable nonlinear state feedback controllers with well-characterized stability and performance properties. The controllers enforce stability and robust asymptotic reference-input tracking in the constrained uncertain closed-loop system and provide, at the same time, an explicit characterization of the region of guaranteed closed-loop stability. When full state measurements are not available, a combination of the state feedback controllers with high-gain state observes and appropriate saturation filters, is employed to synthesize bounded robust multivariable output feedback controllers that require only measurements of the outputs for practical implementation. The resulting output feedback design is shown to inherit the same closed-loop stability and performance properties of the state feedback controllers and, in addition, recover the closed-loop stability region obtained under state feedback, provided that the observer gain is sufficiently large. The developed state and output feedback controllers are applied successfully to non-isothermal chemical reactor examples with uncertainty, input constraints, and incomplete state measurements. Finally, we conclude the paper with a discussion that attempts to put in perspective the proposed Lyapunov-based control approach with respect to the nonlinear model predictive control (MPC) approach and discuss the implications of our results for the practical implementation of MPC, in control of uncertain nonlinear processes with input constraints.
Read full abstract