This paper deals with the real-time trajectory generation problem for two cooperating mobile robots moving the common rigid object. The holonomic constraints resulting from a closed kinematic chain and the dynamics of such a system are considered. Two methods of generation sub-optimal trajectories allowing for mechanical and control limitations and collision avoidance conditions are proposed. The first solution is based on a leader-follower approach, in the second one the robotic system is treated as a whole mechanism. In both cases, the trajectories are generated in order to avoid singularities and they are scaled to satisfy control constraints. Advantages and disadvantages of both presented approaches are discussed. A computer example involving two mobile manipulators consisting of nonholonomic platform (2,0) class and planar 3-DOF holonomic manipulator is presented.